A FETI-DP Formulation of Three Dimensional Elasticity Problems with Mortar Discretization
نویسنده
چکیده
Abstract. In this paper, a FETI-DP formulation for the three dimensional elasticity problem on non-matching grids over a geometrically conforming subdomain partition is considered. To resolve the nonconformity of the finite elements, a mortar matching condition on the subdomain interfaces (faces) is imposed. By introducing Lagrange multipliers for the mortar matching constraints, the resulting linear system becomes similar to that of a FETI-DP method. In order to make the FETIDP method efficient for solving this linear system, a relatively large set of primal constraints, which include average and momentum constraints over interfaces (faces) as well as vertex constraints, is introduced. A condition number bound C(1 + log(H/h)) for the FETI-DP formulation with a Neumann-Dirichlet preconditioner is then proved for the elasticity problems with discontinuous material parameters when only some faces are chosen as primal faces on which the average and momentum constraints will be imposed. An algorithm which selects a quite small number of primal faces is also discussed.
منابع مشابه
A Feti-dp Algorithm for Elasticity Problems with Mortar Discretization on Geometrically Non-conforming Partitions
Abstract. In this paper, a FETI-DP formulation for three dimensional elasticity on non-matching grids over geometrically non-conforming subdomain partitions is considered. To resolve the nonconformity of the finite elements, a mortar matching condition is imposed on the subdomain interfaces (faces). A FETI-DP algorithm is then built by enforcing the mortar matching condition in dual and primal ...
متن کاملA Neumann-dirichlet Preconditioner for a Feti-dp Formulation with Mortar Methods
In this article, we review a dual-primal FETI (FETI-DP) method with mortar methods. The mortar matching condition is used as the continuity constraints for the FETI-DP formulation. A Neumann-Dirichlet preconditioner is investigated and it is shown that the condition number of the preconditioned FETI-DP operator for the two-dimensional elliptic problem is bounded by C maxi=1,...,N{(1 + log (Hi/h...
متن کاملA FETI-DP Formulation for Compressible Elasticity with Mortar Constraints
A FETI-DP formulation for three dimensional elasticity problems on non-matching grids is considered. To resolve the nonconformity of the finite elements, a mortar matching condition is imposed on subdomain interfaces. The mortar matching condition are considered as weak continuity constraints in the FETIDP formulation. A relatively large set of primal constraints, which include average and mome...
متن کاملA FETI-DP Formulation for Two-dimensional Stokes Problem on Nonmatching Grids
We consider a FETI-DP formulation of the Stokes problem with mortar methods. To solve the Stokes problem correctly and efficiently, redundant continuity constraints are introduced. Lagrange multipliers corresponding to the redundant constraints are treated as primal variables in the FETI-DP formulation. We propose a preconditioner for the FETI-DP operator and show that the condition number of t...
متن کاملUN CO RR EC TE D PR O O F 1 A Neumann - Dirichlet Preconditioner for FETI - DP 2 Method for Mortar Discretization of a Fourth Order 3 Problems in 2 D 4
FETI-DP methods were introduced in [8]. They form a class of fast and efficient 13 iterative solvers for algebraic systems of equations arising from the finite element 14 discretizations of elliptic partial differential equations of second and fourth order, 15 cf. [8, 10, 11, 16] and references therein. In a one-level FETI-DP method one has 16 to solve a linear system for a set of dual variable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 46 شماره
صفحات -
تاریخ انتشار 2008